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Page 24, equation (C6): In the second term of this equation change
the plus sign in the numerator to a minus sign so that the numerator

L L
will be 3 — sin 4.



NATIONAL ADVISORY COQMMITTEE FOR AERONAUTICS
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THE BUCKLING OF A COLUMN ON EQUAILY
SPACED DEFLECTIONAL AND ROTATIONAL SFRINGS

By Bernmard Budiansky, Paul Seide, and Robsrt A. Weinberger

SUMMARY

A solution is presented for the problem of the buckling of a
column on equally spaced deflectional and rotational springs. Useful
cherts, which relate deflectional spring stiffness, rotatlonal spring
stiffness, and buckling load, are given for columms having two, three,
four, and an infinjte number of spens.

INTRODUCTION

A problem that arises in the analysls of alrcraft structurss is
the determination of the buckling losd of e coluwm which is supported
at points along its spen by other structural members. In general,
the supporiing msuwbers resitraln the columm elastically ageinst both
deflection and rotation. It is therefore convenient to consider that
the elastic restraints coms from deflectional and rotational springs at
the points of support.

_ By solving the column differential eguation, Klempsrer end Gihbons
(reference 1) found the buckling load of simply supported columms
subdivided into two, three, end four spans by equally spaced Inter-
mediate deflectional springs of equal stiffness. Zahorskl (reference 2) s
using the same approach, extended these results for colums with
two and three spans by also consldering intermsdiate rotational springs
of equal stiffness. The method of solving the colum differential
equation is unduwly laborious, however, for columns having meny spans
since each possible buckling configuration must be consldsred separately;
consequently, & solution to the case of an infinite number of spans wes
not obtained. :

By using difference equations, Ratzersdorfer (refersnce 3) and
Tu (reference U4) obtained an expression for the buckling load of
columms with any number of spans on deflectional springs alone (fig. 1(a))
and, in addition, were able to soclve for the case of an infinite number
of spans. In the present paper, the Rayleigh-Ritz energy method lis used
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to extend the results by considering, ih addition to deflectional springs,
intermediate rotatlonal springs of_ equal stiffness end end rotational
springs of half the stiffness of the intermediste springs (fig. L(b)).

The speclal end-support conditions specified for the present problem
facllitate an exact solution for the case of any mumber of spans and
permit the derivatlon of e limiting expression for the case of an
infinite number of spans.
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RESULTS AND DISCUSSION

[ %

The results of this paper are presented in terms of the folléwing 1
three nondimensional parameters: --:'~- -~ .~ = cas '
Pl'.2 - T L K ;L':.’t-?:.'_’ 5
T buckling-load paramster -~ -~ 2 o o . L K C o
cL3 ;
§r  deflectionel-stiffness pevemeter :
L “'

%LI rotational-stiffness pa.ra.meter
where : R =z ‘r.:'-' T -
P buckling load. il oml o w ) ) ’
L - length be'bween suppor'bs Tl L ] ) N

EX column 'bend.ing s'biffne 88

LY T e

RPN

'd.eflec“biona.l spr:Lng consta:rrb force per u.nit d.eflection .

K rotatlonal spring gonstan'b torque per u:ni'b rotation

The curves of figures 2 'bo 5 show 'bhe rela.‘bionships a.mong these
parameters for columms of two, three,.four, and an infinite number of
spans. The curves were obtained from the exac'l: stability equations
derived 'by the Ra.yleigh-Ri'bz energy method. :Ln a.p;pend.ixes B and C.

s atre S g% e s,

- The d.iscontinuities of the slopes of 'bhe ocurves in figures 2 to U
correspond to sudden changes 1n the type of buckling pattern; the
number of buckles g corresponding to each region between these
discontinuities is given in these figures. .The curves for the infinite-
span column (fig. 5) are smooth because the buckling configuration R
varies continuously with chenges in deflecilonel support stiffness. '
The horizontal pexrts of each curve of figures 2 to 5 correspond to .

* buckling wilth no deflsction of the supports and with the number of -
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buckles equal to the number of spans. (See fig. 6(a).) The buckling
load 1s then independent of the deflectional spring stiffness.

For the infinite-spen column (fig. 5), parts of the curves for

20 and %I:-E = 50 are seen to be coincldent with the curve for

a2

il These parits correspond to buckling with the columm deflection

curve horizontal at the supports (see fig. 6(b)) so that the buckling
load is no longer dependent on the rotatlonal spring stiffness. In

the finite-span columns this independence of rotational spring stiffness
never occurs but is approximated more and mors as the number of spans
increases; this approximetion is shown by the increasing proximity of

the curves for IE% = 20, 30, end © in figures 2 to 4. A discussion

of 'bhis, phenomsnon is glven in appendix C.

The curves for the infinite case may be used to obtaln & close
approximaetion, on the conservative slde, to the buckling load of a
columm with more then four spans. The error involved, shown by figure 7T
to be lees than 10 percent for the four-span case, decreases as the
number of spans Increases. -7

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Fleld, Va.
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APPENDIX A

SYMBOLS

distance along column (fig. 1(b))
deflection of columm (fig. 1(b))
deflection of support

number of spans

length between supports

colum bending stlffness

buckling load

[p12 >
dimensionless buckling-load parameter < E—i—

deflectlional spring constent, force per unit deflection
dimensionless deflectional-stiffness perameter @%
rotational spring constant; torque per unlt rotation
dimensionisss rotational-stiffness parameter <§EE
integers

integer defining location of a support <xc = c@
nunber of buckles

Kronecker delta (1L if m=n; O if m # n)
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APPENDIX B
DERTIVATION OF STABILITY CRTITHRIONS

The following development of the stability criterlons for a
column on equally spaced deflectional and rotational supports is based
on the Rayleigh-Ritz ensrgy method. A Fourler seriss is chossn to
represent the deflectlon curve of the buckled columm, and the potential
energy expression ls minlmized wlth respect to sach of the unknown
Fourler coefficients. The resulting equations are separated into
independent sets, each set containing the coefficlents corresponding
to a partlcular buckling mcde. A general expression for the stability
criterion for each buckling mode is derived.

Energy Expressions

The deflectlon curve of the buckled columm may be represented by
the Fourler series

-]

y=Zansj_nn-ﬁ-L—’°‘ (B1)

n=1

When the initially straight column buckles, the bending energy
stored in the column is

= % L Z nL"a.n2 (B2)

N'l 02
Vi = AR
d 2
c=1
G N-~-1 o e o
=3 Z &y sin S (B3)
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The energy stored in the rotationsl springs is

SRE NI I I |

=’£—£—i im':kncosp-gsz2 t (Bk4)
2 () c=0 1 N 1+ 85, + By, _

The ends of the colum move toward each other and the work done by the

buckling load is
J] (g) ix = —f i n°e 2 (B5)

n=1

The buckling load may be found by minimizing the energy expression
FeoVy+Vy+V, -W (B6)

with respect to the a's. Substitution of equations (B2) to (B5)
into equation (B6) gives

Feg (ms{Z[ (EE} ]ane‘”af“sxz%m")
@ ne, cos =< o\’ = (B7)
1 + By, +-Byg

4
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Minimization

Minimizing F with respect to the a's yilelds

FE _ o
day
. © N-1
L 2 5| o83 nrte inc
= |n° == n a, + — 3~ &y gin =~ gin =
= ' m=1 cal N X
- Iy N
2KT Z Z mre nixe 1
o — mna,, COoB == co8 =
N
2 m=1 c=0 N 1+ e’Oc * ch

"

Consider the summations

c=1
w
. and
' 1 N
: E COB e cos = 1
- N N
. c=o l + Boc =+ BNC

(B8)

F1t]
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Appendix D shows that the summations have the following values:

Condition N-1 N
nxc ane
m+n m-n E sin-ﬁ-sin—l-q—- Ecosm-%scosn-%gl_l_al
2N oN o= e oc *+ Bxo
Not Not
integer | integer Y 0
- Integer | Integer 0 N
Not
Not K 5
/ integer Integer 2 2

For a given valus of n, the condition that will apply for each
value of m 1s indicated in the following teble where p 18 & positive

integer, r 1is & positive integer such that » + p 1is even, and k3
and ko are integers (plus or minus) yielding positive m:
Condition
m+n m-n n = pN n # PN
2N 2N
Not Not m # 2k N - n
integer |integer |2 # TN m # 2KN + n
Integer | Integer |m = N Never
RNot m=2kiN - n
Integer | ynteger | Never m ¥ 2koN + n
Not m # 2kgN - n
integer Integer | Never m = 2N + n
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A}

The infinite set of equations (B8), with the use of the values

of the swmeations, mey be divided into the following three independent
infinite sets of equatlons:

b NDNE 2N°T 9 |
EPN) C‘f-g (pN) apN + -';E— PN r=lZ3 . rNa.rN =0 _ (39)

‘ , (p = 1,3,5,.-.)
EPN)M ) C%)? (PN)E] By + 21,:2__2_'1‘ pN r; ; rNe o = 0 (B10)
(p .;‘a,u,.".s,...)
| [}u -(?TIDQ ne:lan“’:is %%2 ) %}aml

N2Tn [ N
¢+ =2 Iy + Zmla.m =0 (311)
. (% P2 |

(n = 1,2,3,...)

(n ¥ oN)

-where my = 2lgN - n, my = 2k,N +n, and the sumetions ere over all
plus or minus integral values of ky and k, that yleld positive my
and m,,

Equations (B1l) may be further subdlvided into N - 1 independent
sets. Conslder ome of equations (Bll) for & particular n equel to gq;
the a's appearing in the summations will have the subscripts

m =2N-q, UN-gqg, 6N -q,. . .
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and
m, =g, 2N+4q, 48 +q, 6N +q,. . .

If equations (Bll) are now written for n equal to these preceding
values, a's having the seme subscripts, and only these a's, will
appear in the summations. Thus if

n=gq, 2N+gq, 4N +q, 6N +4q,. .

then

ml=2N -4, LN - 4q, 6N" qye = o
and.

my=q, 2N+q, WN+q, 6N +qg,. «
Ir

n=2N-qg, W-q, 6N-q,. ..
then

m =q, 2N +g, 1I-N+q, 6N+q,...
and

m2=2N-q_, )-I-N-q_’ 6N"q,-.-

Then, an infinite independent subset of equations (B11) is given by
the following two groups of equations (equations (B12) and (B13): -

b _ Y ¢S |
Eesl\r +q) -C%) (2aW + q)ejlaQEN-l-q_,..l' e kZ; E‘zkmq i a2(k+l)N—q:'

-]
NoT
+ 1-{-2— (ESN + q) Z (oxy + Q)aakmg_
k=0

(s = 0,1,2,...)
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{[2(5 +1)N - g : - C%f [2(5 + )N - Jz}ae(su)n-q

s

b, = '
NS -
52 > [eeteaineq - seumeq]
k=0

ca

. 1%1‘ [2(5 + 1N - (ﬂ Z [2(k + )N ~ q:l 82(k+1)N-gq
- _

k=0

- (20 + Qayy, b=  (313)
(s = 0,1,2’...)

A1]1 the equations of (Bll) are given by N - 1 sets obtained by
letting g in equations (B12) and (B13) assume the velues 1, 2, . . . N - 1.

Stabllity Criterions

It has been shown that equations (B8) can be broken up into N + 1
subsets, two of which are given by equations (B9) and (B10) and the
remaining N - 1 by equations (B12) and (B13). ZEach set contains a's
appearing in no other set; hence, each set of equations leads to an
independent stability criterion corresponding to buckling in a particular
mode. These criterions are derived as follows.

First consider equations (B9) which involve only the Fourier
components &y, a3N,- - +y whilich correspond to buckling of the column

with nodes at the supports and with a symmetrical buckling configuration
in each bay. Solving for aPN and nmultiplying through by pN gives
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: 2 @ _
Py = - 2T (o) Z rfe, (BL4)

P (ot -(‘,%—ﬁ)z<pn)2 =135

(P = 113,5)"')

Summing over p yields

[

oN2T o (pN)? .
PNa, B e ee— ri (315)
? PN ES‘ E &N
r=1,3,5 7= p=1,3,5 (PN)h' -(?DE(PN)E r=1,3,5

Since
00 (-]
:E: PNapN = ji: rNex
P=l,3;5 I'='l,3,5
#0

% - - Z = 2@)2 (B16)

which 1s the desired stebility criterion.

Equations (B10), which contain only the Fourler coefficilents Bons )
& 26ys ¢ ¢ - » Yleld a criterion for buckling of the colwm with

an antisymmetricel buckling configuration in sach bay and with nodes at
the supports. This buckling criterion need never be considered bscause
it always gives a higher buckling-load than does eguation (B16).

In order to obtain the buckling criterions for the other modss,
equations (Bl2) and (B1l3) are transposed as follows:



; ] .
Poal4g = o + 529‘25 % ;[ 2(k+l)ﬂ-q]
T -
' 25 + 9')9.25+‘1 fg{@k ¥ ;) 2kil+g E(k ¥ 1) - :l %o (k+1)N- q} (B17)
“Ef; .
a'f‘:(s+l)N—q [2 (s + 1)“ N] Q‘2(3+l) Z [aekNﬂ 2(k+l)N-<;I

T

¢ % Z {(ak + Donreg * [2(]: 1) - ] (k1) q}(ma)

;_E(B +1) - JQ2(5+1) d k=0

where _ -
Q25+% = <§L'2 - (és + %)2
%a(s41)- q ( ) [e(s +1) - %]2

8 =0,1L,2,. ..

qQ=1,2, .. N-1

6TCT "ON NI VOWN

€T
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For any velue of g, summing equations (Bl7) snd equations (B18) over e and subtracting
equations (B18) from equations (BLl7) gives

~ -
;. E’Esﬂﬂ il a2(s+l)N~q:| " ig[%Mq ) a'e(kq-l)l\'-n;lZﬁ ;_2 + ; > >
. k 8=0 L(aa + 1%) Qgsa,% E’é(a +1) - -ﬁ] Q2(3+1)—%J

i ;Il_g i @ ¥ %D"‘mdm ¥ [}(k +1) - %] fo(ke+1)Nq i —
k=0 . 8=0 @a + '@Q?sw!-%

i} x \ (B19)
[2(3 +1) - ;ﬂaqa(sﬂ)_%

Multiplying oquations (BL7) by 28 + 3 and oquations (B18) by 2(s + 1) -%, sumaing

6TGT *ON KI VOV

over s, and adding the two equations ylelds




+

i: éa + -@aesmq + [2(3 +1) - -%]aa(gﬂ)_% a 52 E?_km-q
k=0

8=0

6TGT "ON NI VOUN

1
a2(k+l)ﬂ’] i (23 + $Q % [2(5 +1) - — Qe( +1)___

Denoting the left side of equation (B19) by X and the left side of equation (B20) by Y and
rearranglng the equations gives

s
5=0 CB+3>Q2 ﬂ [2(n+l)--g'jIQ2( l)-—

= 0 ' (B21)

uar 1l
- Y - .
EZO (23 + @Qe E’E(s +1) - %IQE(ml)—%-




9T

- X —-Z (a 4.§Q,:2 q [_2(5+1) -gE(sﬂ.)--

* Y %.2'-- Z L 1 3 - 0 (B22)
8=0 Q2s+% %(a1) F .
Equating the determinent of the coefficlenta of X anmd Y to zero ylelds the N - 1 stabllity
criterions corresponding to q = 1,2,3,. - . N -1

s . 2 =
; Z (oo ooy 2o+ 0 - ey g) /| i[qe“"i QE‘“"""%]

3]

1

= 1
\& )&y oo iR N -

2(s+1) -

6TCT "ON HI YOVM
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or

s 2
("5-9@-9-02=0 (B2k)

where A, B, and C denote the series of equations (B23).

These N - 1 equations, together with egquation (B16)

-4

%” Z 2.2 ?G}E (816)

»=1,3,5

constitute the complete set of stability criterions.

The Fourler expression for the column deflection curve corresponding
to each of the criterions of equations (B23) contains only the coefficients

&> 8oNiqr ZhEap? Z6Waq’”

and.
a.gN_q, alm_q, a6N—q_" .

Each of the criterions are satisfied by many different buckling loeads
for given values of S and T, the lowest of which will be obtained
when the coefflcient 8q 1s dominant.

Each criterion of equatiomns (B23) for & given gq therefore corresponds
to a buckling configuration of q buckles. Egquation (B16), as previously
indicated, corresponds to buckling with no deflection of the supports
in N Dbuckles.

Closed Forms of Stability Criterions

Each of the series in equation (B2Lk) may be evaluated and the
stability criterions expressed in closed form. Serles B and C are
evaluated first since the resulis are.nscessary in the evaluation of
series A.



=D and -Ii=d- Then,

Series B.~- Iet Y

=]

0

Z[ 1, 1
" QES-I%‘ Q2(8+l)-%

o0

1 -1
E: a? -._(Eé + b)2.+ az - [2(9 +1) - 'E_l‘?

=0

- 1
a@ "02 Z[ie-(25+b)2 dz—(es-b)Q:I

[

1 ) 1 . 1

_gs+(d+'b) 28 - (d - D) 23+(d-b)-25-(d+b)

o
]
-

|
(.
4
8-
e

d.2 _'b2

a2 - p2

f
[
1
R I
o]
1
:

[ 2(d + D) f 2(d - D)
2 -(a+D)? Le? - (a-1)?

K
o[ - [

o
il
pat]

Eh
Ms

d_2 - b2

8T

6TGT *ON NI VOVN
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With the use of equation (6.495) for cotangent in reference 5, the
summation is equal to

1 x x 2 .4 2
L lcot 2 (4 + D) - ~——Bem t E(d - D) ~ ——
de_b2+hd‘}°2( + 1) ::(<1+b)+°° 5 ( ) ::(a—b)]

x sin =d
2d cos xb - cos wd

L
72 sin 3

%COB!%'COB%

Series C.- For series C

0

1 i 1
ZO; @s * @QQM% [2(3 +1) - %_.JQz(sﬂ)-%

- -]

o L _ - _1 .
N -8 =) (s = v)[a2 - (2s +1)2] (28 - B)[a2 - (25 - )7

S S [ I N SU SN S
p(a2 - 12) 6.2 2s +b 2o+ (d+Dd) 228 -(a-D)

- 1
.28 - D

1 !

+ e A ———————— A —————————
os + (& -b) 228 -(d+0D)

ot

1 __l_i[ L1 2@em) 1 e(d-b) :l
b(a? - p2) a® L |be? - v° T2 - (a+1)2 2 - (a- b2



Uaing equetion (6.495) Por cotangent :ln reference 5 ylolds after aimplifying the closed
form

s 8in xb(l - cos xd) - 'lez"_gin ,%(1 - cos &
* & (cos b - cos x)(1 - cos xb) GJ‘)E (003 1‘% - cos l'::f)(l - cos ‘l%)

Seriesg A.- For series A

_ 1 1
8=0 @a + %qug_,% ’ E(B +1) - ﬂeqa(sﬂ)-%

I SN Z _1 . 1 B
b2(a® - 1) 4| (es + v)2[a2 - (28 + b)f‘-j (28 - p)?[a2 - (25 - p)F]

1 1 . 1 R SR 1
v2(d2 - 12) a2 opi(2s +1)2 a2 - (2a +1b)2 (28 -b)2 42 - (28 - D)

f

2 1 1
+ + +
n2(a2 - 1) a2 S |he® - BB (48R - 1P)P [12 - (28 +1)2 42 - (28 - b)E:I

6TGT *oN NF YOVA




Uesing the resulte of the preceding eveluatlons end differentiating equation (6.495) for
had 4

cotangent in reference 5 to evaluate the term -———5@-—:‘2—)@ Ylelds after simplifying
ge1 (4s= -

L
12 1 . X sin xd o 1 o sin 5

= +
242 1 - coamd 245 cos nb - cos A 2(@2 1 - cos n% 2(13‘)3 cos :r% - 005-13'

Cloped forms.- Substituting these results of the three serles in equations (B23)
glves

sin l'

) e

.
T

sin%'
I—'( u% - cos %’)

-‘—sin "NQ- - 008 J)

(@ gD )]

as the closed-form stablility criterions for buckling in the modes where q = 1,2,. . . N - L.

6TGT "OH ME YOVN

g
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The series of equation (B1l6) mey be eveluated as follows:
(-]

1 2
R

- Z ° L (B26)

e%p-1351=2=f2-4(1‘3>

From eq_ua.'bion (6.495) for tengent in reference 5, the sunmation 1s equal

to tanés; hence,

T=--—2-I-f (B27)
mé-a -

which 1s the stebility criterion for buckling in N buckles with nodes
at the supports.

Equations (B25) and (B27) constitute the complete set of closed-
form stebility criterions. The correct criterion for any glven values
of S and T is that which yields the lowest buckling load.
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AFPPENDIX C
STABILITY CRITERION FOR N =

When N becomes infinite, q/N can assume any valus between O
and 1. Therefore, it becomes necessary to find the value of ¢/N that
mekes the buckling-load perameter L/J e minimum for given values of
deflectional-stiffness parameter S and rotational-stiffness paramster T.

The required condition 1s
()
=0 (c1)
3
()
However, L/j is defined implicitly by & function (see equations (B25))

£(s, T, L/3, a/M) =0 (c2)

where

0<E<1

Taking the total derivative of equation (C2) and keeping S and T

constant gives
@ - - a(f)___léﬁ.) | (03)
B w0l

«3)
But mist vanish. Therefore a required condition for minimization
26

of L/T 1is
2(2)

@

(ck)
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Expending equations (B25), clearing of fractions , end dividing by
- a4 q L
G- cos ’TN)@OS T - cos 3) yields '

P = %)25603 :(l% - cos %’) + 2]3:'S@ - cos ml%)sjha%
-STE'sin%'-EG -00531-‘)]+QG—‘)3Tsin%'@ -cosx%)
- h(g—")hé = co8 ﬂ%) cos xl% - cos %‘)

when
q
o< f< 1
Th tting 9 )
en, setting J(f) equal to 0 gives
q 1+ cos’-‘Ij-' s %’#’sin'..rj T sin%‘
cos =z = S "% )3 tE T (cé)
3 J
when
q
< =<
0 X 1l

Substituting equation (C6) in equation (C5) yields after simplifying



r
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. 2 3
826 - sin%) - llS(%‘> G + sin%') @. - cos %’)

+25TG‘>2 Ein%@+ Bin%')- h{1 - cos%>]
- 1}'1‘(%)5 ein % 1 - cos %D
+ 'I‘Ee-j'))-L sin2 %‘ + L;@)s@ - cos %‘)2 = 0_ , (cn

which is the stebility criterion for a column with an infinite number of
spans when O < % < 1.

When q/N is equal to its limiting velue, 1, eguation (C5) ylelds
two independent criterions:

ii’}/y:go
- 2 L <
o8 T=-—— — TEx (c8)
tan —
23

c
which corresponds to column buckling with no support deflection, and Czl\\qo

- __*\-”P\}l
S ELT

3 2
L L
S = = c9
2'-5:111]—:"-26-005;-') BE
J J. J

which corresponds to column buckling with no support rotation.
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In order to obtain the curves of figures 5 and 8, equations (C7)
to (C9) must be carefully used in conjunction with each other. Thus,

for example, along the curve for KL 5 in figure 5, equation (c7)

EI
is used up to %’-— = 58.7, at which point equation (C8) is satisfied.
o1l L3 KL PL2

For greater values of 77> the combinations of ==, =, E
which satisfy eguation (C7) will meke q/N imaginary (cos :t% < '5

in equation (C6) . Hence, beyond the limiting value of .%‘—, q_/l-'-f
remains equel to 1 and the buckling loed remains constant.” The dashed-

3
line demarcation curve In figure 5, which gives the limiting value of %‘-—,
is obtained by eliminating % between equaticns (C7) and (C8).

3
Similarly, in figure 8, along the curve for %1-__;‘:'- = 25, for example,
equation (C7) is used up to :EI%: = 14.0, at which point equation (C9)
is satlsfied. For greater values of %’, the combination of -%:‘-é,

B ong EIZ
BT’ T which satisfy equation (C7) ylelds imaginary velues of q/N .

Beyond the limiting value of %, therefore, the buckling load remains
at the value given by equation (C9). The dashed-line demarcation curve

3
of figure 8 1s obtained by eliminating %;_ between equations (C7)

and (C9).
The peculiar shape of the demarcation curve of figure 8 accounts
for the peculiarities of the behavior of the curves for =¥ = 20

KL, KL, Bl
and el 50 in figure 5. If P is greater than 11.04 (the minimum
value of %Li on the demarcation curve) & constant -g:I['-line will -

intersect the demarcetlon curve in two points. Between these polnts
the buckling loads are independent of the rotational spring stiffness

and are oqual to the buckling loeds for ﬁnf =ew which accounts for the
fact that along parts of their length, the curves in figure 5 for

KL _ 50 ana K - 50 cotincide with the curve for ¥ = w.
ET BT ET

It is of interest to note that buckling which is Iindependent
of the rotational spring stiffness cannot ocour when the number of spans
is finite, but dees occur for the infinite case. For the buckling load
to be independeni of the rotational spring stiffness, the column deflectlon
curve must be horizontal at-sach support. In the case of finite columns,
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this conditlon can obviously not be fulfillled at the end supports
so long as the rotational spring stiffness is finlte; in the infinite
columm, howsver, there is no end effect and the column cen buckle

as shown in figure 6(b).

27
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APPENDIX D

EVALUATION OF SUMMATIONS ENCOUNTERED IN

DERIVATION OF STABILITY CRITERIONS

N-
Evaluation of E sin m_;;g sin n—;—c

c=1
N-1
In order to evaluate _;_ sin m_.;rc sin n__;_c Pirst make the substi-
c=1
tutions
mxc mxc
1% _ i
mge _ o -2
sin N = 51 (D1)
and
184%¢ -1
omme s s 08)
N - 21
Then
N-1
sin mxe sin uxe
N i
c=1
N-1

mnc nne
M e
sln gin X

]

c=0

L}

=i

N-1
Z[ei%q(nﬂn) N e-i’%(mﬂ:) _ ej.’-;?-c(m-n) _ e-i'%q(m-nﬂ (03)
c=0
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Cese 1: m +n eoven.- Consider the summation of the first term
on the right-hand side of equation (D3)

31 ZON
> e 5 (F) @

According to reference 6, page 36, this summation i1s recognized

as the sum of the ( = Z IDth powers of the N Nth roots of unlty and the
+
sum is W or O according as 2 > 2 is or is not a multiple of K.

The summation of -bhe second general term in eq_ua.ti.on (D3) is also the

sum of the ( th powers of the N Nth roots of unity. The summations

of the last two terms are the sum of the m; th powers of the N Nth
roots of unity. Hence, the following conclusions mey be made: If

neither m +n nor m.-n is & mulitiple of 2N,

If bpoth m+n and m - n are multiples of 2N,

N-1
nrec
_;_ sin =2 gin =< = 0
¥ N
c=1

If only m+ n is a: multiple of 2N,

N-1
mxc nne N
sa Ty SRR T B
c=1

If only m - n 1is a multiple of 2N,
N-1

E sin m_}i%g gin 2E€
c=2 N

e



Cese 2: m + n  odd:- Conalder the summation

c

N-1 o }
Zﬁ ei’%"—(mn) =1+ 311’-;:(m+n) + [ej%(m)] .0 .+ [eiﬁ(mn)]n .

1 - i {m+n)
1- ef(mn)
Now
eui(m-l-n) = oos n(m + n) + 1 ain x(m + n)
= -1
gince m+ n 1s odd. Hence
= 10 :
> o e - (06)
¢=0 1 - e‘ﬁ"(mﬂl)

Performing similsr operatione on the other summations of equation (D3) ylelds
N-1

S e aame. 4Ll .1
e e RN N * 1Y SRS = TPV R JESV RN - [EX

=0 {p7)

6TGT *oN NI YOVE




Since m+n is odd, neither m+n nor m - n 1is a mltiple of 2N; and the results
of case 2 may be lncluded in the firat conclusion for case 1.

0 :
Evalvation of Z cos IE%_E cos n—ﬁg N S
¢=0. 1+ 8p, + By

In the evaluation of the Immmtion

-S- mic nxe L 1 E mrC nne 1
— [ e e——— ) = = ———— —— i
cog N CGoB - Q 5 ) cos8 N co8 X COB nit -cos8 mx

c=0 G=D
§-1 o |
; mRc ome 1 mn i
= E CoB 3 co8 -fvé (—l - J) (D8)
=0 T —
nake the substitutions
mxe mrc
i 1=
cog TG _© N +e X (09)
and
nxc nno
19 B0
N N
nac o +0
cos - = 5 (D10)

6TST "o NI VOWVN
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Then

X _
mgc nxc 1

E con cos
N N Q+ Soc + Oy D

c=0

N-1
1 [ei’%(m+n) . e-igng(m+n) . e:L’-‘If(m--n) . e-i‘ﬁ(m-n)]_l_ %Glmm _9

c

=

(p11)

Cese 1l: m + n even.- Applying the theorem of reference 6
regarding the sum of powers of the N Nth roots of unity and noting

that % <_lm+n - J) = Q0 results in the following conclusions: If

neither m +n mnor m - n 1s a multiple of 2N

N
coswcosnﬁ L
N N \I + 8 + Opq
c=

=0
If both m+n and m - n are multiples of 2N
N .
E mme anc 1
co8 =/ 0o == =N
pr N N Q"'SOc"'amD

If only m+n 1s a multiple of 2N

=
Q
Q
L7}
:
Q
o]
[¢:]
-
"
+
(o4
o
Q f-
+
7
N/
I}
o

If only m - n is a multiple of 2N

Z N N A1+ 8pc + By

o=
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Cagse 2: m + n " odd.- By use of the sames evaluation procedure as
for case 2 of the previous serles, the summation on the right-hand
side of eguation (Cll) is found to be equal 'bo l. However,

Jé' C_lm+n - D equals -1 when m + n 1is odd, and hence

N
mxc nxe 1
cos —— cos — =0 (D12)
Z N N Q+ 50c + SND

c=0

This result may be included in the first conclusion for case 1 since,
if m+n is odd, neither m+n nor m - n is & Tmltiple of 2N.
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Figure 2.— Buckiing curves for two-span column.
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Figure 3,— Buckling curves for three-span column.

BT9T 'ON NI VOVN

L8




180

45
00)]
0 WOflb“cme.s’q =I| ! 1 ! L ] 1 l 1 ([ L i
0 20 40 60 80 s 100 120 140 60
Gl
T

Figure 4 - Buckling curves for four-span column.
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(a) %4. No support deflection.

I

(b) %=l. No support rotation.

Figure 6.~ Limiting buckiing configurations.
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Figure 7~ Comparison of buckling curves for columns with four spans and an infinite number of spans.
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